Cover von Differentialgleichung wird in neuem Tab geöffnet
E-Medium

Differentialgleichung

Verfasser: Suche nach diesem Verfasser Tautkus, Rolf (Verfasser)
Jahr: 2016
Verlag: Lecturio GmbH
Vorbestellbar: Ja Nein
Voraussichtlich entliehen bis:
Link zu einem externen Medieninhalt - wird in neuem Tab geöffnet

Exemplare

StandorteStatusFristVorbestellungenInteressenkreisMediengruppe
Standorte: Taut Status: Online Download Frist: Vorbestellungen: 0 Interessenkreis: Mediengruppe: eMedien

Inhalt

Differentialgleichungen finden in vielen Disziplinen Anwendung - neben Physik und Ingenieurwissenschaften z. B. auch in der Medizin, Chemie und Geographie. Die Kursabschnitte 1-4 sind für Studenten, Wissenschaftler und Interessierte verschiedener Fachbereiche konzipiert. Die weiterführenden Kapitel mit Beispielen aus der Physik richten sich v. a. an Naturwissenschaftler und Ingenieure. In diesem Kurs werden Differentialgleichungen behandelt, die eine Variable enthalten und sich mit analytischen Methoden bearbeiten lassen. Der Fokus liegt dabei nicht auf der mathematischen Theorie - es wird vielmehr großer Wert auf die Anwendung der Verfahren gelegt. Die vorgestellten Methoden führen im Allgemeinen auf explizit darstellbare Lösungen. Obwohl dadurch die Frage nach der eindeutigen Lösbarkeit von Differentialgleichungen im Hinblick auf gegebene Anfangswertprobleme beantwortet ist, wird auf die grundsätzliche Problematik hingewiesen. Sie ergibt sich vor allem für numerische Verfahren und wird mit dem Eindeutigkeitssatz von Picard- Lindelöf beantwortet. Als eines der wichtigsten Lösungsverfahren wird die "Trennung der Variablen" besprochen, das sich auf separierbare Differentialgleichungen anwenden lässt. Des Weiteren sind insbesondere lineare Differentialgleichungen Gegenstand der Vorlesung. Mit Hilfe des Superpositionsprinzips führen Verfahren wie der " Ansatz vom Typ der rechten Seite" oder die "Variation der Konstanten" auf die Lösung der Gleichung. Die Methoden werden für Differentialgleichungen 1. Ordnung vorgestellt und später auf Gleichungen höherer Ordnung erweitert. Eine Reihe häufig auftretender spezieller Differentialgleichungen sind: die exakte Differentialgleichung, die Bernoulli'sche und die Riccati'sche Differentialgleichung. Es wird gezeigt, dass man sie auf lineare Differentialgleichungen zurückführen kann. Als letztes Verfahren wird der Potenzreihenansatz vorgestellt. Die Lösungsfunktion wird in eine Taylorreihe entwickelt, und die Reihenglieder schrittweise über die Differentialgleichung bestimmt. Dieses Verfahren greift immer dann, wenn alle anderen analytischen Verfahren nicht zum Erfolg führen. Auf diese Weise erhält man eine Näherungslösung über ein festgelegtes Intervall. Eine Abschätzung des Fehlers schließt sich an. Diese wird durchgeführt, wenn man die Näherung anstelle der exakten Lösung verwendet. Für diesen Kurs werden gründliche Kenntnisse der Differential- und Integralrechung vorausgesetzt, wie sie bis zum Abitur vermittelt werden. Darüber hinaus sind Grundkenntnisse über komplexe Zahlen und Lineare Algebra von Vorteil.

Details

Verfasser: Suche nach diesem Verfasser Tautkus, Rolf (Verfasser)
Jahr: 2016
Verlag: Lecturio GmbH
Suche nach dieser Systematik
Suche nach diesem Interessenskreis
Beschreibung: 7:51 h
Suche nach dieser Beteiligten Person
Sprache: Deutsch
Mediengruppe: eMedien